Critical role for classical PKC in activating Akt by phospholipase A2-modified LDL in monocytic cells.

نویسندگان

  • Stefan Preiss
  • Dmitry Namgaladze
  • Bernhard Brüne
چکیده

OBJECTIVE Modification of low density lipoprotein (LDL) by phospholipases confers pro-atherogenic properties, although signalling pathways of phospholipase-modified LDL (PLA-LDL) remain obscure. We questioned whether members of the protein kinase C (PKC) family are involved in PLA-LDL-induced Akt phosphorylation and survival of THP-1 monocytic cells. METHODS Akt phosphorylation in THP-1 cells was monitored by Western analysis. To modulate PKC expression cells were transfected with dominant-negative enhanced green fluorescent protein linked PKCalpha (PKCalpha-EGFP K368R) and PKCbeta (PKCbeta-EGFP K371M) constructs or with siRNA specific for PKCalpha/PKCbeta using nucleofection technology. Cell survival was assessed by Annexin V/propidium iodide staining or mitochondrial membrane potential measurement with 3,3'-dihexyloxacarbocyanine iodide (DiOC(6)) using flow cytometry. RESULTS Inhibitors of phospholipase C (PLC) or classical PKCs as well as PKC depletion following phorbol ester treatments, blocked Akt phosphorylation in response to PLA-LDL. In contrast, phosphatidylinositol 3-kinase (PI3K) activation by PLA-LDL was insensitive to PKC inhibition. Using RNA interference to knockdown PKCalpha and overexpression of dominant-negative PKCalpha as well as PKCbeta drastically lowered Akt phosphorylation after PLA-LDL. Moreover, inhibition of PKC attenuated a PLA-LDL-induced survival response towards oxidative stress in THP-1 cells. CONCLUSION We show that PKCalpha and PKCbeta are critical for PLA-LDL-induced Akt phosphorylation and survival in THP-1 monocytic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholipase A2-modified low-density lipoprotein activates the phosphatidylinositol 3-kinase-Akt pathway and increases cell survival in monocytic cells.

OBJECTIVE Monocyte survival is an important determinant in the development of atherosclerotic lesions. We investigated the influence of phospholipase A2-modified LDL (PLA-LDL), a pro-atherogenic factor, on activation of the pro-survival kinase Akt and cell death in monocytic cells. METHODS AND RESULTS PLA-LDL induced robust phosphorylation and activation of Akt in THP1 cells. It also attenuat...

متن کامل

Syndecan-4 mediates macrophage uptake of group V secretory phospholipase A2-modified LDL.

We previously reported that LDL modified by group V secretory phospholipase A2 (GV-LDL) promotes macrophage foam cell formation through a mechanism independent of scavenger receptors SR-A and CD36, and dependent on cellular proteoglycans. This study investigates the role of syndecans, a family of cell surface proteoglycans known to mediate endocytosis through macropinocytosis, in macrophage upt...

متن کامل

Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis.

Native low density lipoprotein (LDL) does not affect monocyte/macrophage motility. On the other hand, oxidatively modified LDL inhibits the motility of resident peritoneal macrophages yet acts as a chemotactic factor for circulating human monocytes. We now show that lysophosphatidylcholine (lyso-PtdCho), which is generated by a phospholipase A2 activity during LDL oxidation, is a potent chemota...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca /NFAT

Activation of endothelial cells by lipid oxidation products is a key event in the initiation and progression of the atherosclerotic lesion. Minimally modified lowdensity lipoprotein (MM-LDL) induces the expression of certain inflammatory molecules such as tissue factor (TF) in endothelial cells. This study examined intracellular signaling pathways leading to TF up-regulation by oxidized 1-palmi...

متن کامل

Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target.

The development of atherosclerotic vascular disease is invariably linked to the formation of bioactive lipid mediators and accompanying vascular inflammation. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an enzyme that is produced by inflammatory cells, co-travels with circulating low-density lipoprotein (LDL), and hydrolyzes oxidized phospholipids in LDL. Its biological role has been c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 73 4  شماره 

صفحات  -

تاریخ انتشار 2007